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What is the talk about?

» There is a probabilistic model that generates n-vertex graphs: the Barabasi—Albert
model.

» Each graph has a certain probability p of arising through that model.

» We want to design a data structure that compresses a graph generated by that
model using (close to) Ig(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

» We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!
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Preferential-attachment graphs

How does the Barabasi-Albert model work?

Procedure:
» We fix parameters M and n > 1.
» We create a vertex vj.

» At each step t from 2 to n, we create one vertex v; and direct M edges from v; to
vy, where t/ < t.

» The probability of v; to be selected as an out-neighbour of v; is proportional to
its degree right before v; was created.
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Preferential-attachment graphs (example)

Example: fixing n=5 and M = 3.

"
(= =0T
1 1 1-(3/6)> 3-(3/12)> 3-(3/18)%-(4/18)

Thus, the probability of the graph Gs being generated is P[Gs] = 1/9216.
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» We have a graph G (generated by the BA model).

» What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

» Instance optimal = Ig(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph. An adjacency string A of G is a string whose alphabet
Y = V(G), and A= NT(vi)N"(v2)...NT(v,) where N*(v) denotes a string
concatenating the out-neighbours of v in some arbitrary order.

A= ivivi vivivi vivivi V2Vv2Vv3 V4V3Va
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Turns out... the probability p is related to the compressibility of its adjacency string A!
The empirical entropy of a string is a measure of compressibility.

Definition (Empirical Entropy)

For a string T[1l..n] over alphabet ¥ = [1..0], the zeroth-order empirical entropy

Ho(T) is given by Ho(T) =>7_,|T|clg (ﬁ) where | T|¢ is the number of
occurrences of the character c in T.

Key idea behind the formula: it measures how unpredictable or random the
characters in a string are based on how often each character appears.

Theorem
Given an n-vertex directed graph G generated by the BA model with probability p,

18(1/p) = Ho(A) = O(nM g M).
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Compressing A?

» The adjacency string A contains all the information needed for structural queries.

» A data structure that compresses A in near optimal space and allows for efficient
queries on the string could be useful.

» One solution: wavelet trees!
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Wavelet trees

Lemma (Wavelet tree, Navarro'14)

Let S be a string of size n and alphabet ¥ = [1..0]. There is a data structure using
Ho(S) + o(n) bits that supports the following operations in O(lg o) time:

access(S,i): returns S[i], the symbol at index i in S;

ranky (S, 1): returns the number of indices with value o € ¥ in S[1..i];

selecty(S,i): returns the index of the ith occurrence of value « € ¥ in S.

A is of size nM. So we can compress A in Hy(A) + o(nM) bits while supporting the
above operations in O(Ig n) time (here, o = n).
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A= vivivi vivivi vivivi Vo Vo Vv3 V4 V3 V4

Question 1. Find the jth out-neighbour of v; [1 point].

Solution: Compute A[M(i — 1) + j] using a O(lg n) access query on A.

10/13



Navigational operations on G using A (2/3)

N =0

A= vivivi vivivi vVivivi V2vaVv3 V4V3Va

11/13



Navigational operations on G using A (2/3)

A= vivivi vivivi vVivivi V2vaVv3 V4V3Va

Question 2. Compute the in-degree of v; [2 points].

11/13
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A= vivivi vivivi vVivivi V2vaVv3 V4V3Va

Question 2. Compute the in-degree of v; [2 points].

Solution: Count how many times v; occurs in A. A simple rank query suffices;
O(lg n).
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Navigational operations on G using A (3/3)

A= vivivi vivivi vVivivi V2vaVv3 V4V3Va

Question 3. Find the jth in-neighbour of v; (assume it exists) [5 points].

Solution: Find the position x in A where the jth occurrence of v; is. The answer is
[x/M]. The first part involves a select query; O(Ig n).
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We have seen how to compress PA graphs generated by the BA in space
asymptotically instance optimal while supporting navigational queries efficiently.

This scheme can be extended to general graphs (i.e. non-M-regular graphs) by

using an additional vector of bits that denote the sizes of the out-neighbourhoods
in A.

A slightly better compression scheme can be achieved if labels (i.e. vertex
identities) need not be preserved.

Cheers.
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