
Succinct Preferential-Attachment Graphs

Ziad Ismaili Alaoui, Namrata, Sebastian Wild1

University of Liverpool, United Kingdom

WG 2025, Otzenhausen, Germany

1University of Marburg, Germany
1 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!

2 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs

: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!

2 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!

2 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!

2 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits.

Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!

2 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!

2 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space,

but the operations will be faster!

2 / 13

What is the talk about?

▶ There is a probabilistic model that generates n-vertex graphs: the Barabási–Albert
model.

▶ Each graph has a certain probability p of arising through that model.

▶ We want to design a data structure that compresses a graph generated by that
model using (close to) lg(1/p) bits. Idea: the less probable a graph is, the more
bits/space we use.

▶ We want the data structure to allow for efficient navigational operations.
Implication: we will use a little bit more space, but the operations will be faster!

2 / 13

Preferential-attachment graphs

How does the Barabási-Albert model work?

Procedure:

▶ We fix parameters M and n ≥ 1.

▶ We create a vertex v1.

▶ At each step t from 2 to n, we create one vertex vt and direct M edges from vt to
vt′ , where t ′ < t.

▶ The probability of vt′ to be selected as an out-neighbour of vt is proportional to
its degree right before vt was created.

3 / 13

Preferential-attachment graphs

How does the Barabási-Albert model work?

Procedure:

▶ We fix parameters M and n ≥ 1.

▶ We create a vertex v1.

▶ At each step t from 2 to n, we create one vertex vt and direct M edges from vt to
vt′ , where t ′ < t.

▶ The probability of vt′ to be selected as an out-neighbour of vt is proportional to
its degree right before vt was created.

3 / 13

Preferential-attachment graphs

How does the Barabási-Albert model work?

Procedure:

▶ We fix parameters M and n ≥ 1.

▶ We create a vertex v1.

▶ At each step t from 2 to n, we create one vertex vt and direct M edges from vt to
vt′ , where t ′ < t.

▶ The probability of vt′ to be selected as an out-neighbour of vt is proportional to
its degree right before vt was created.

3 / 13

Preferential-attachment graphs

How does the Barabási-Albert model work?

Procedure:

▶ We fix parameters M and n ≥ 1.

▶ We create a vertex v1.

▶ At each step t from 2 to n, we create one vertex vt and direct M edges from vt to
vt′ , where t ′ < t.

▶ The probability of vt′ to be selected as an out-neighbour of vt is proportional to
its degree right before vt was created.

3 / 13

Preferential-attachment graphs

How does the Barabási-Albert model work?

Procedure:

▶ We fix parameters M and n ≥ 1.

▶ We create a vertex v1.

▶ At each step t from 2 to n, we create one vertex vt and direct M edges from vt to
vt′ , where t ′ < t.

▶ The probability of vt′ to be selected as an out-neighbour of vt is proportional to
its degree right before vt was created.

3 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1

v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2

v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2

v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2

v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2

v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3

v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3

v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3

v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3

v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4

v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4

v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4

v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4

v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

Preferential-attachment graphs (example)

Example: fixing n = 5 and M = 3.

v1 v2 v3 v4 v5

1 1 1 · (3/6)3 3 · (3/12)3 3 · (3/18)2 · (4/18)

Thus, the probability of the graph G5 being generated is P[G5] = 1/9216.

4 / 13

From undirected to directed

Assuming G is an undirected graph generated by the BA model, we can uniquely
reconstruct its directed version.

1-to-1 correspondence!

? ? ? ? ?

5 / 13

From undirected to directed

Assuming G is an undirected graph generated by the BA model, we can uniquely
reconstruct its directed version. 1-to-1 correspondence!

? ? ? ? ?

5 / 13

From undirected to directed

Assuming G is an undirected graph generated by the BA model, we can uniquely
reconstruct its directed version. 1-to-1 correspondence!

? ? ? ? ?

5 / 13

From undirected to directed

Assuming G is an undirected graph generated by the BA model, we can uniquely
reconstruct its directed version. 1-to-1 correspondence!

? ? ? ? ?

5 / 13

From undirected to directed

Assuming G is an undirected graph generated by the BA model, we can uniquely
reconstruct its directed version. 1-to-1 correspondence!

? ? ? ? ?

5 / 13

From undirected to directed

Assuming G is an undirected graph generated by the BA model, we can uniquely
reconstruct its directed version. 1-to-1 correspondence!

? ? ? ? ?

5 / 13

From undirected to directed

Assuming G is an undirected graph generated by the BA model, we can uniquely
reconstruct its directed version. 1-to-1 correspondence!

? ? ? ? ?

5 / 13

Towards a data structure (1/2)

▶ We have a graph G (generated by the BA model).

▶ What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

▶ Instance optimal = lg(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph. An adjacency string A of G is a string whose alphabet
Σ = V (G), and A = N+(v1)N

+(v2) . . .N
+(vn) where N+(v) denotes a string

concatenating the out-neighbours of v in some arbitrary order.

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

6 / 13

Towards a data structure (1/2)

▶ We have a graph G (generated by the BA model).

▶ What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

▶ Instance optimal = lg(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph. An adjacency string A of G is a string whose alphabet
Σ = V (G), and A = N+(v1)N

+(v2) . . .N
+(vn) where N+(v) denotes a string

concatenating the out-neighbours of v in some arbitrary order.

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

6 / 13

Towards a data structure (1/2)

▶ We have a graph G (generated by the BA model).

▶ What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

▶ Instance optimal = lg(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph. An adjacency string A of G is a string whose alphabet
Σ = V (G), and A = N+(v1)N

+(v2) . . .N
+(vn) where N+(v) denotes a string

concatenating the out-neighbours of v in some arbitrary order.

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

6 / 13

Towards a data structure (1/2)

▶ We have a graph G (generated by the BA model).

▶ What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

▶ Instance optimal = lg(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph. An adjacency string A of G is a string whose alphabet
Σ = V (G), and A = N+(v1)N

+(v2) . . .N
+(vn) where N+(v) denotes a string

concatenating the out-neighbours of v in some arbitrary order.

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

6 / 13

Towards a data structure (1/2)

▶ We have a graph G (generated by the BA model).

▶ What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

▶ Instance optimal = lg(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph.

An adjacency string A of G is a string whose alphabet
Σ = V (G), and A = N+(v1)N

+(v2) . . .N
+(vn) where N+(v) denotes a string

concatenating the out-neighbours of v in some arbitrary order.

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

6 / 13

Towards a data structure (1/2)

▶ We have a graph G (generated by the BA model).

▶ What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

▶ Instance optimal = lg(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph. An adjacency string A of G is a string whose alphabet
Σ = V (G), and A = N+(v1)N

+(v2) . . .N
+(vn) where N+(v) denotes a string

concatenating the out-neighbours of v in some arbitrary order.

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

6 / 13

Towards a data structure (1/2)

▶ We have a graph G (generated by the BA model).

▶ What we want: A data structure that compresses G and whose space usage is
asymptotically instance optimal.

▶ Instance optimal = lg(1/p) bits.

Definition (Adjacency string)

Let G be a directed graph. An adjacency string A of G is a string whose alphabet
Σ = V (G), and A = N+(v1)N

+(v2) . . .N
+(vn) where N+(v) denotes a string

concatenating the out-neighbours of v in some arbitrary order.

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

6 / 13

Towards a data structure (2/2)

Turns out... the probability p is related to the compressibility of its adjacency string A!

The empirical entropy of a string is a measure of compressibility.

Definition (Empirical Entropy)

For a string T [1..n] over alphabet Σ = [1..σ], the zeroth-order empirical entropy
H0(T) is given by H0(T) =

∑σ
c=1 |T |c lg

(
n

|T |c

)
where |T |c is the number of

occurrences of the character c in T .

Key idea behind the formula: it measures how unpredictable or random the
characters in a string are based on how often each character appears.

Theorem

Given an n-vertex directed graph G generated by the BA model with probability p,
lg(1/p) = H0(A)± O(nM lgM).

7 / 13

Towards a data structure (2/2)

Turns out... the probability p is related to the compressibility of its adjacency string A!
The empirical entropy of a string is a measure of compressibility.

Definition (Empirical Entropy)

For a string T [1..n] over alphabet Σ = [1..σ], the zeroth-order empirical entropy
H0(T) is given by H0(T) =

∑σ
c=1 |T |c lg

(
n

|T |c

)
where |T |c is the number of

occurrences of the character c in T .

Key idea behind the formula: it measures how unpredictable or random the
characters in a string are based on how often each character appears.

Theorem

Given an n-vertex directed graph G generated by the BA model with probability p,
lg(1/p) = H0(A)± O(nM lgM).

7 / 13

Towards a data structure (2/2)

Turns out... the probability p is related to the compressibility of its adjacency string A!
The empirical entropy of a string is a measure of compressibility.

Definition (Empirical Entropy)

For a string T [1..n] over alphabet Σ = [1..σ], the zeroth-order empirical entropy
H0(T) is given by H0(T) =

∑σ
c=1 |T |c lg

(
n

|T |c

)
where |T |c is the number of

occurrences of the character c in T .

Key idea behind the formula: it measures how unpredictable or random the
characters in a string are based on how often each character appears.

Theorem

Given an n-vertex directed graph G generated by the BA model with probability p,
lg(1/p) = H0(A)± O(nM lgM).

7 / 13

Towards a data structure (2/2)

Turns out... the probability p is related to the compressibility of its adjacency string A!
The empirical entropy of a string is a measure of compressibility.

Definition (Empirical Entropy)

For a string T [1..n] over alphabet Σ = [1..σ], the zeroth-order empirical entropy
H0(T) is given by H0(T) =

∑σ
c=1 |T |c lg

(
n

|T |c

)
where |T |c is the number of

occurrences of the character c in T .

Key idea behind the formula: it measures how unpredictable or random the
characters in a string are based on how often each character appears.

Theorem

Given an n-vertex directed graph G generated by the BA model with probability p,
lg(1/p) = H0(A)± O(nM lgM).

7 / 13

Compressing A?

▶ The adjacency string A contains all the information needed for structural queries.

▶ A data structure that compresses A in near optimal space and allows for efficient
queries on the string could be useful.

▶ One solution: wavelet trees!

8 / 13

Compressing A?

▶ The adjacency string A contains all the information needed for structural queries.

▶ A data structure that compresses A in near optimal space and allows for efficient
queries on the string could be useful.

▶ One solution: wavelet trees!

8 / 13

Compressing A?

▶ The adjacency string A contains all the information needed for structural queries.

▶ A data structure that compresses A in near optimal space and allows for efficient
queries on the string could be useful.

▶ One solution: wavelet trees!

8 / 13

Compressing A?

▶ The adjacency string A contains all the information needed for structural queries.

▶ A data structure that compresses A in near optimal space and allows for efficient
queries on the string could be useful.

▶ One solution: wavelet trees!

8 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ].

There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM. So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time (here, σ = n).

9 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ]. There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM. So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time (here, σ = n).

9 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ]. There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM. So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time (here, σ = n).

9 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ]. There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM. So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time (here, σ = n).

9 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ]. There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM. So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time (here, σ = n).

9 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ]. There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM.

So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time (here, σ = n).

9 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ]. There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM. So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time

(here, σ = n).

9 / 13

Wavelet trees

Lemma (Wavelet tree, Navarro’14)

Let S be a string of size n and alphabet Σ = [1..σ]. There is a data structure using
H0(S) + o(n) bits that supports the following operations in O(lg σ) time:

▶ access(S , i): returns S [i], the symbol at index i in S;

▶ rankα(S , i): returns the number of indices with value α ∈ Σ in S [1..i];

▶ selectα(S , i): returns the index of the ith occurrence of value α ∈ Σ in S.

A is of size nM. So we can compress A in H0(A) + o(nM) bits while supporting the
above operations in O(lg n) time (here, σ = n).

9 / 13

Navigational operations on G using A (1/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 1. Find the jth out-neighbour of vi [1 point].

Solution: Compute A[M(i − 1) + j] using a O(lg n) access query on A.

10 / 13

Navigational operations on G using A (1/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 1. Find the jth out-neighbour of vi [1 point].

Solution: Compute A[M(i − 1) + j] using a O(lg n) access query on A.

10 / 13

Navigational operations on G using A (1/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 1. Find the jth out-neighbour of vi [1 point].

Solution: Compute A[M(i − 1) + j] using a O(lg n) access query on A.

10 / 13

Navigational operations on G using A (2/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 2. Compute the in-degree of vi [2 points].

Solution: Count how many times vi occurs in A. A simple rank query suffices;
O(lg n).

11 / 13

Navigational operations on G using A (2/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 2. Compute the in-degree of vi [2 points].

Solution: Count how many times vi occurs in A. A simple rank query suffices;
O(lg n).

11 / 13

Navigational operations on G using A (2/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 2. Compute the in-degree of vi [2 points].

Solution: Count how many times vi occurs in A. A simple rank query suffices;
O(lg n).

11 / 13

Navigational operations on G using A (3/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 3. Find the jth in-neighbour of vi (assume it exists) [5 points].

Solution: Find the position x in A where the jth occurrence of vi is. The answer is
⌈x/M⌉. The first part involves a select query; O(lg n).

12 / 13

Navigational operations on G using A (3/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 3. Find the jth in-neighbour of vi (assume it exists) [5 points].

Solution: Find the position x in A where the jth occurrence of vi is. The answer is
⌈x/M⌉. The first part involves a select query; O(lg n).

12 / 13

Navigational operations on G using A (3/3)

v1 v2 v3 v4 v5

A = v1v1v1 v1v1v1 v1v1v1 v2v2v3 v4v3v4

Question 3. Find the jth in-neighbour of vi (assume it exists) [5 points].

Solution: Find the position x in A where the jth occurrence of vi is. The answer is
⌈x/M⌉. The first part involves a select query; O(lg n).

12 / 13

To conclude...

▶ We have seen how to compress PA graphs generated by the BA in space
asymptotically instance optimal while supporting navigational queries efficiently.

▶ This scheme can be extended to general graphs (i.e. non-M-regular graphs) by
using an additional vector of bits that denote the sizes of the out-neighbourhoods
in A.

▶ A slightly better compression scheme can be achieved if labels (i.e. vertex
identities) need not be preserved.

Cheers.

13 / 13

To conclude...

▶ We have seen how to compress PA graphs generated by the BA in space
asymptotically instance optimal while supporting navigational queries efficiently.

▶ This scheme can be extended to general graphs (i.e. non-M-regular graphs) by
using an additional vector of bits that denote the sizes of the out-neighbourhoods
in A.

▶ A slightly better compression scheme can be achieved if labels (i.e. vertex
identities) need not be preserved.

Cheers.

13 / 13

To conclude...

▶ We have seen how to compress PA graphs generated by the BA in space
asymptotically instance optimal while supporting navigational queries efficiently.

▶ This scheme can be extended to general graphs (i.e. non-M-regular graphs) by
using an additional vector of bits that denote the sizes of the out-neighbourhoods
in A.

▶ A slightly better compression scheme can be achieved if labels (i.e. vertex
identities) need not be preserved.

Cheers.

13 / 13

To conclude...

▶ We have seen how to compress PA graphs generated by the BA in space
asymptotically instance optimal while supporting navigational queries efficiently.

▶ This scheme can be extended to general graphs (i.e. non-M-regular graphs) by
using an additional vector of bits that denote the sizes of the out-neighbourhoods
in A.

▶ A slightly better compression scheme can be achieved if labels (i.e. vertex
identities) need not be preserved.

Cheers.

13 / 13

To conclude...

▶ We have seen how to compress PA graphs generated by the BA in space
asymptotically instance optimal while supporting navigational queries efficiently.

▶ This scheme can be extended to general graphs (i.e. non-M-regular graphs) by
using an additional vector of bits that denote the sizes of the out-neighbourhoods
in A.

▶ A slightly better compression scheme can be achieved if labels (i.e. vertex
identities) need not be preserved.

Cheers.

13 / 13

